Imagem do artigo Princípios de Aprendizado Supervisionado: Overfitting e Underfitting

7.7. Princípios de Aprendizado Supervisionado: Overfitting e Underfitting

Página 28 | Ouça em áudio

7.7 Princípios de Aprendizado Supervisionado: Overfitting e Underfitting

O aprendizado supervisionado é um dos pilares fundamentais do Machine Learning (ML), onde o algoritmo aprende a partir de dados rotulados para fazer previsões ou classificações. No entanto, dois dos principais desafios que surgem durante o treinamento de modelos de aprendizado supervisionado são o overfitting e o underfitting. Estes conceitos são cruciais para o desenvolvimento de modelos eficientes e confiáveis.

O que é Overfitting?

Overfitting ocorre quando um modelo de ML aprende os detalhes e o ruído nos dados de treinamento a tal ponto que ele se torna excessivamente complexo e acaba por ter um desempenho ruim em dados novos, não vistos anteriormente. Isso significa que o modelo se ajustou demais aos dados de treinamento, capturando padrões que não são generalizáveis para outros conjuntos de dados.

Causas do Overfitting

  • Complexidade do Modelo: Modelos com muitos parâmetros, como redes neurais profundas, são particularmente propensos ao overfitting, pois têm a capacidade de aprender padrões muito específicos nos dados de treinamento.
  • Poucos Dados: Ter um conjunto de dados de treinamento pequeno pode levar a um modelo que não tem dados suficientes para aprender padrões verdadeiramente generalizáveis.
  • Ruído nos Dados: Se os dados de treinamento contêm muito ruído, o modelo pode acabar aprendendo esse ruído como se fossem características significativas.

Como Evitar o Overfitting

  • Regularização: Técnicas como L1 e L2 adicionam um termo de penalidade à função de custo do modelo para desencorajar a complexidade excessiva.
  • Cross-Validation: Usar validação cruzada permite avaliar como o modelo se generaliza para um conjunto de dados independente durante o treinamento.
  • Podar o Modelo: Reduzir a complexidade do modelo, removendo camadas ou neurônios em redes neurais, ou escolhendo modelos mais simples.
  • Early Stopping: Parar o treinamento assim que o desempenho em um conjunto de dados de validação começa a piorar.
  • Aumento de Dados: Criar novos dados de treinamento artificialmente através de técnicas como rotação, deslocamento ou espelhamento de imagens.

O que é Underfitting?

Underfitting é o oposto do overfitting e ocorre quando um modelo é muito simples para capturar a complexidade dos dados. Como resultado, o modelo não aprende os padrões subjacentes nos dados de treinamento suficientemente bem, levando a um desempenho ruim tanto nos dados de treinamento quanto nos dados de teste.

Causas do Underfitting

  • Modelo Simples Demais: Um modelo com poucos parâmetros ou que não é suficientemente complexo para capturar a estrutura dos dados.
  • Características Inadequadas: Usar um conjunto de características (features) que não captura as informações importantes dos dados.
  • Treinamento Insuficiente: Parar o treinamento muito cedo antes que o modelo tenha tido a chance de aprender adequadamente dos dados.

Como Evitar o Underfitting

  • Aumentar a Complexidade do Modelo: Escolher um modelo mais complexo ou adicionar mais parâmetros pode ajudar a capturar melhor a estrutura dos dados.
  • Engenharia de Características: Criar novas características ou transformar as existentes para melhor representar a informação nos dados.
  • Mais Treinamento: Permitir que o modelo treine por mais tempo pode ajudar a aprender os padrões nos dados de treinamento.

Balanceando Overfitting e Underfitting

Encontrar o equilíbrio certo entre evitar overfitting e underfitting é uma arte e uma ciência. O objetivo é alcançar um bom compromisso entre a capacidade do modelo de generalizar para novos dados (evitando overfitting) e sua habilidade de capturar informações suficientes dos dados de treinamento (evitando underfitting). Isso geralmente é alcançado através de experimentação e ajuste fino dos hiperparâmetros do modelo.

Em resumo, entender e mitigar overfitting e underfitting é essencial para criar modelos de aprendizado de máquina robustos e confiáveis. Ao aplicar técnicas como regularização, validação cruzada, e engenharia de características, podemos melhorar significativamente a capacidade de um modelo de fazer previsões precisas em dados novos e desconhecidos.

Agora responda o exercício sobre o conteúdo:

Qual das seguintes opções descreve corretamente o conceito de overfitting em Machine Learning (ML) e uma técnica para evitá-lo?

Você acertou! Parabéns, agora siga para a próxima página

Você errou! Tente novamente.

Imagem do artigo Princípios de Aprendizado Supervisionado: Regularização

Próxima página do Ebook Gratuito:

29Princípios de Aprendizado Supervisionado: Regularização

4 minutos

Ganhe seu Certificado deste Curso Gratuitamente! ao baixar o aplicativo Cursa e ler o ebook por lá. Disponível na Google Play ou App Store!

Disponível no Google Play Disponível no App Store

+ de 6,5 milhões
de alunos

Certificado Gratuito e
Válido em todo o Brasil

48 mil exercícios
gratuitos

4,8/5 classificação
nas lojas de apps

Cursos gratuitos em
vídeo, áudio e texto